

LA-UR-21-27417

 $\label{lem:proved} \mbox{Approved for public release; distribution is unlimited.}$

Title: Sealed Vessel Leak Test

Author(s): Lujan, Therese Monet

Intended for: Symposium

Issued: 2021-07-28

Sealed Vessel Leak Test

Therese Lujan
Q-18: Advanced System Development
Mike Steinzig Q-18

August 3rd, 2021

Introduction

- A test plan has been developed to verify the results obtained from sealed vessels used in support of the JT5-Alt370-IN-1 compatibility testing.
- The test plan needs to be verified by doing a mock test on testing vessels, it
 will be adjusted and redone as necessary then conducted on the remaining
 vessels from the compatibility tests.

Project Overview

01

Objective

 Develop a test procedure to validate leakproof integrity of vessels. 02

Background

Vessels

 Sealed Swagelok fittings.

Instrument

 Parr Instrument Company Pressure Vessel.

Ideal Gas Law

 Formulas and concepts used in experiment. 03

Experimental Methods

- Parameter definition.
- Experimental setup and procedure.

04

ExpectedResults

 Results for mock test and on samples.

Objective

 The intent of this experiment is to develop a test procedure to validate leak-proof integrity of previously sealed Swagelok assembled fittings.

Background

Vessels

- Swagelok assembled fittings with welded tubes at one end.
- Vessels will be sealed to manufacturer specifications.
- Gap test will be done using a gap gage.

Instrument

- Parr Instrument Company pressure vessel.
- 1L capacity.
- Maximum pressure and temperature are 350°C and 2000 psi, respectively.
- Three Swagelok vessels will be placed into the instrument, then it will be filled with colored water until all vessels are submerged.

Figure 3 Internal Outline of Parr Pressure Vessel Figure 4 Model 4600 Parr Instrument Pressure Vessel

Ideal Gas Law

PV=nRT
$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$
 $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

- The Ideal Gas Law is a law that describes the relationships between measurable properties of an ideal gas.
- Assumptions made to simplify calculations.
- Determine internal pressure (P₂) in the vessel at 60°C and 80°C, using atmospheric pressure and room temperature as initial conditions.

Experimental Methods

Data Collection & Parameter Interpretation • Determine Vessel, Parr • Testing steps. Quantitative and operating instrument, and qualitative temperature, scale measurements. pressure, and preparation. duration.

Expected Results

• It is expected that by sealing the vessels to manufacturer specifications there should not be leaks.

Acknowledgements

- Philip Leonard Q-DO
- Geoff Brown Q-5

Questions?

